

Curso académico:Código:2025-26P/CL009_FC_D002

PLAN DOCENTE DE LA ASIGNATURA

Identificación y caracterís	ticas de la as	ignatura			
Código	501731 Créditos ECTS				
Denominación (español)	Modelos Lineales				
Denominación (inglés)	Linear Models				
Titulaciones	Grado en Estadística				
Centro	Facultad de Ciencias				
Semestre	6 Carácter	Obligatoria	<u>.</u>		
Módulo	Formación Obligatoria				
Materia	Estadística				
Profesor/es					
Nombre	Despacho	Correo-e	Página web		
Manuel Mota Medina B36	Dac	mota@unex.es	Campus		
	B30		Virtual		
Área de conocimiento	Estadística e Investigación Operativa				
Departamento	Matemática	S			
Profesor coordinador			_		
(si hay más de uno)	_				

Competencias

CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio

- CB3: Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- CB4: Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- CB5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
- CG1: Desarrollar las capacidades de análisis, abstracción, intuición, organización y síntesis, así como el razonamiento lógico, riguroso y crítico.
- CG2: Capacitar al alumno para utilizar los conocimientos teóricos y prácticos adquiridos en la

Curso académico:Código:2025-26P/CL009_FC_D002

definición y planteamiento de problemas, así como en la búsqueda de sus soluciones tanto en contextos académicos como profesionales.

CG3: Preparar al alumno para el trabajo en equipos multidisciplinares, capacitándolo para entender los razonamientos de especialistas de otros campos y comunicar sus propios razonamientos y conclusiones.

CG4: Promover la curiosidad y el interés por los métodos y técnicas que estudia la Estadística y la Investigación Operativa, animándolo a mantenerlos y transmitirlos una vez finalizados sus estudios.

CG5: Mostrar la importancia, necesidad y utilidad de la metodología estadística en otras ciencias (ciencias experimentales, ciencias de la salud, ciencias sociales y humanas, etc.)

CG6: Dotar al alumno de los conocimientos necesarios para que pueda continuar estudios posteriores en otras disciplinas tanto científicas como tecnológicas.

CT4: Prepararse para el aprendizaje autónomo de nuevos conocimientos, métodos y técnicas; y para emprender estudios posteriores con un alto grado de autonomía.

CT5: Dominar las Tecnologías de la Información y las Comunicaciones mediante el uso de aplicaciones informáticas de análisis estadístico, cálculo numérico y simbólico, visualización gráfica, tratamiento de datos, optimización, y el desarrollo de programas que resuelvan problemas estadísticos utilizando para cada caso el entorno computacional adecuado.

CE3: Estudiar y resolver problemas en situaciones de incertidumbre, sabiendo construir y validar modelos probabilísticos para la descripción de tales situaciones.

CE6: Realizar estudios comparativos entre poblaciones y detectar posibles relaciones entre variables.

CE7: Aplicar correctamente la metodología estadística en análisis de datos e interpretar en sus justos términos los resultados obtenidos.

CE8: Identificar y analizar estadísticamente la información relevante contenida en problemas reales, así como aplicar técnicas estadísticas específicas para su resolución.

CE12: Diseñar, programar e implementar software estadístico y de gestión de bases de datos.

Contenidos

Breve descripción del contenido

Distribuciones de probabilidad de interés en modelos lineales. Estimación y contraste de hipótesis en modelos lineales. Regresión múltiple. Análisis de la covarianza. Diseño de experimentos. Introducción a los modelos lineales generalizados.

Temario de la asignatura

Denominación del tema 1: Distribuciones de probabilidad y formas cuadráticas.

Contenidos del tema 1: 1.1 Introducción. 1.2 Resultados algebraicos. 1.3 Distribuciones de probabilidad asociadas al modelo lineal. 1.4 Formas cuadráticas.

Descripción de las actividades prácticas del tema 1: Ninguna

Denominación del tema 2: Modelo Lineal Básico de Rango Completo.

Contenidos del tema 2: 2.1 Modelo Lineal: definiciones y ejemplos. 2.2 Estimación puntual. 2.3. Valores ajustados y residuos

Descripción de las actividades prácticas del tema 2: Programación.

Denominación del tema 3: Modelo Lineal Normal de Rango Completo.

Contenidos del tema 3: 3.1 Introducción. 3.2 Estimación puntual. 3.3 Intervalos y regiones de

Curso académico:	Código:	
2025-26	P/CL009_FC_D002	

confianza. 3.4 Contraste de hipótesis.

Descripción de las actividades prácticas del tema 3: Ajuste de modelos de Regresión Lineal, Regresión Polinómica y Análisis de la Covarianza haciendo uso de software estadístico.

Métodos de selección de variables en modelos de regresión.

Denominación del tema 4: Modelo Lineal de Rango No Completo.

Contenidos del tema 4: 4.1 Introducción.4.2 Estimación en el Modelos Lineal de rango no completo. 4.3 Contraste de hipótesis en el Modelo Lineal de rango no completo.

Descripción de las actividades prácticas del tema 4: Ninguna

Denominación del tema 5: Modelos de Diseño de Experimentos.

Contenidos del tema 5: 5.1 Introducción al Diseño de Experimentos. 5.2 Experimentos con un factor. Efectos fijos. 5.3 Experimentos con dos factores. Efectos fijos. 5.4 Modelos de efectos aleatorios y mixtos.

Descripción de las actividades prácticas del tema 5: Ajuste de modelos de Diseño de Experimentos con uno o dos factores haciendo uso de software estadístico.

Denominación del tema 6: Modelos Lineales Generalizados.

Contenidos del tema 6: 6.1 Introducción a los Modelos Lineales Generalizados. 6.2 Estimación en Modelos Lineales Generalizados. 6.3 Contraste de hipótesis en Modelos Lineales Generalizados. 6.4 Variables dicotómicas y regresión logística.

Descripción de las actividades prácticas del tema 6: Ajuste de distintos tipos de Modelos Lineales Generalizados haciendo uso de software estadístico.

Actividades formativas

Horas de trabaj alumno por te		Horas	Horas actividades prácticas		Horas actividad de seguimiento	Horas. No presencial		
Tema	Total	GG	CH	L	0	S	TP	EP
1	17	6			0			11
2	15	6			1			8
3	30	10			7			13
4	13	6			0			7
5	29	8			3			18
6	17	6			3			8
Evaluación	29	3			1			25
TOTAL	150	45			15			90

GG: Grupo Grande (100 estudiantes).

CH: prácticas clínicas hospitalarias (7 estudiantes)

L: prácticas laboratorio o campo (15 estudiantes)

O: prácticas sala ordenador o laboratorio de idiomas (20 estudiantes)

S: clases problemas o seminarios o casos prácticos (40 estudiantes).

TP: Tutorías Programadas (seguimiento docente, tipo tutorías ECTS).

 Curso académico:
 Código:

 2025-26
 P/CL009_FC_D002

EP: Estudio personal, trabajos individuales o en grupo, y lectura de bibliografía.

Metodologías docentes

- 1. Explicación y discusión de los contenidos.
- 2. Resolución, análisis y discusión de problemas. Realización, exposición y defensa de trabajos/proyectos.
- 3. Actividades experimentales como prácticas en laboratorios, aulas de informática y trabajos de campo.
- 4. Actividades de seguimiento individual o por grupos del aprendizaje.
- 5. Trabajo autónomo del estudiante.

Resultados de aprendizaje

Al completar la materia ESTADÍSTICA, el estudiante:

- · Conoce y comprende los principales conceptos de la inferencia estadística básica: estimador, intervalo de confianza, contrastes de hipótesis unilaterales y bilaterales y p-valor.
- · Es capaz de resolver problemas de inferencia estadística (estimación puntual y por intervalos de confianza y contrastes de hipótesis) para la media y la varianza de una población normal, para una proporción, para la comparación de las medias de dos poblaciones normales, para la comparación de dos proporciones y en el modelo lineal normal.
- · Es capaz de plantear de manera clara el modelo estadístico a considerar para la resolución de un problema de relación entre variables o de un problema de comparación entre grupos.
- · Sabe plantear el modelo estadístico a considerar para resolver un problema de regresión o análisis de la varianza multivariante y es capaz de construir estimadores y contrastes de hipótesis adecuados para dichos modelos.
- · Puede, tras la aplicación de las distintas metodologías estudiadas, ser capaz de extraer las conclusiones estadísticas más relevantes y de redactarlas de manera que resulten comprensible en el ámbito científico.
- · Sabe distinguir entre inferencia paramétrica e inferencia no paramétrica.
- · Conoce y sabe aplicar distinto software estadístico para las metodologías estadísticas estudiadas.

Sistemas de evaluación

Criterios de evaluación:

- Demostrar la adquisición y comprensión de los principales conceptos teóricos de la asignatura.
- Aplicar de manera eficiente los conocimientos teóricos en la resolución de ejercicios y/o problemas.
- Aplicar de manera eficiente los conocimientos teóricos en la modelización de problemas prácticos reales.

Curso académico:	Código:
2025-26	P/CL009_FC_D002

- Participar activamente en la resolución de problemas (teórico-prácticos) en la clase.
- Realizar, exponer y defender con suficiencia los trabajos propuestos.

Instrumentos para la evaluación:

Tanto en la convocatoria ordinaria como en la extraordinaria, el estudiante podrá elegir, en las condiciones que establezca la normativa de evaluación vigente, entre el sistema de evaluación continua o el sistema de evaluación con una única prueba final de carácter global. De no realizar esta elección, se entenderá que opta por la evaluación continua.

Para aquellos **estudiantes que opten por el sistema de evaluación continua,** la evaluación se realizará mediante:

- a. Un examen que constará de una parte teórica y una parte práctica que deberá resolverse haciendo uso de software estadístico. Cada parte se calificará con una nota entre 0 y 10. En la nota global del examen se ponderará con un 60% la nota de la parte teórica (NT) y con un 40% la nota de la parte práctica.
- b. La entrega de un trabajo o cuestionario con la resolución de una serie de problemas teóricos y/o prácticos. Esta tarea se calificará entre 0 y 10. Esta actividad tendrá carácter no recuperable.

Para superar la asignatura la puntuación de la parte teórica a que hace referencia el apartado a. (NT) no podrá ser inferior a 4. Una vez cumplido este requisito, la calificación final de la asignatura se obtendrá multiplicando por 0.9 la nota resultante del apartado a. y por 0.1 la nota resultante del apartado b.

Para aquellos **estudiantes que opten por una prueba final de carácter global,** la evaluación se realizará mediante el examen que se indica en el apartado a. anterior. Para superar la asignatura la puntuación de la parte teórica a que hace referencia el apartado a. (NT) no podrá ser inferior a 4.

Bibliografía (básica y complementaria)

- Dobson, A. (1990). "An introduction to Generalized Linear Models". Chapman-Hall.
- Faraway, J.J. (2005). "Linear Model with R". Chapman-Hall.
- Graybill, F.A. (1961). "An Introduction to Linear Statistical Models. Vol. I". McGraw-Hill.
- Graybill, F.A. (2000). "Theory and Applications of the Linear Model". Duxbury Classic.
- Montanero, J. (2008). "Modelos Lineales". Manuales Uex ON-LINE 56.
- Montgomery, D.C. (2004). "Design and Analysis of Experiments. 6th Edition". Wiley.
- Peña, D. (1987). "Estadística: Modelo y Métodos. Vol. II". Alianza Universidad Textos.
- Peña, D. (2002). "Regresión y Diseño de Experimentos". Alianza Universidad Textos.
- Wood, S.N. (2006). "Generalized Additive Models. An Introduction with R". Chapman-
- Yánez, I. y Martín, M. (1991) "Diseño de Experimentos y Teoría de Muestras". UNED.
- Página web del programa R: <u>www.r-project.org</u>

Curso académico:	Código:	FACULTADDECIENCIAS
2025-26	P/CL009_FC_D002	[UEX]

Otros recursos y materiales docentes complementarios		