

Curso académico: Código: 2025-26 P/CL009_FC_D002

PLAN DOCENTE DE LA ASIGNATURA

Identificación y características de la asignatura											
Código	500770 Créditos ECTS										
Denominación	Cálculo II										
Denominación (inglés)	Calculus II										
Titulaciones	Grado en Estadística										
Centro	Facultad de Ciencias										
Semestre	Segundo	Carácter		Básica							
Módulo	Formación	Básica									
Materia	Matemáticas										
Profesor/es											
Nombre			Desp	oacho	Correo-e						
Fernando Sánchez Fernández			C25		fsanchez@unex.es						
Pedro Martín Jiménez			C24		pjimenez@unex.es						
Área de conocimiento Análisis N			Matemático								
Departamento Matemái			ticas								
Profesor coordinador (si hay más de uno)		Fernando Sánchez Fernández									

Competencias

Competencias básicas

- CB1 Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- CB2 Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- CB3 Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- CB4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- CB5 Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

Curso académico: Código: 2025-26 P/CL009_FC_D002

Competencias generales

- CG1 Desarrollar en el estudiante las capacidades analíticas, de abstracción, de intuición así como el pensamiento lógico y riguroso.
- CG2 Capacitar al estudiante para que los conocimientos teóricos y prácticos que adquiera pueda utilizarlos en la definición y planteamiento de problemas y en la búsqueda de sus soluciones tanto en contextos académicos como profesionales.
- CG3 Preparar al alumno para el trabajo en equipos multidisciplinares, capacitándolo para entender los razonamientos de especialistas de otros campos y comunicar sus propios razonamientos y conclusiones.
- CG4 Promover la curiosidad y el interés por los métodos y técnicas que estudia la Estadística y la Investigación Operativa, animándolo a mantenerlos y transmitirlos una vez finalizados sus estudios.
- CG5 Mostrar la importancia, necesidad y utilidad de la metodología estadística en otras ciencias (ciencias experimentales, ciencias de la salud, ciencias sociales y humanas, etc.).
- CG6 Dotar al alumno de los conocimientos necesarios para que pueda continuar estudios posteriores en otras disciplinas tanto científicas como tecnológicas.

Competencias transversales

- CT2 Transmitir información, ideas, problemas y soluciones tanto a un público especializado como no especializado.
- CT3 Planificar y organizar el trabajo personal, así como saber trabajar en equipo.
- CT4 Prepararse para el aprendizaje autónomo de nuevos conocimientos, métodos y técnicas; y para emprender estudios posteriores con un alto grado de autonomía.

Temas y contenidos

Breve descripción del contenido

Primitivas e integrales definidas. Sucesiones y series de funciones. Funciones de varias variables. Derivadas parciales y direccionales. Cálculo con derivadas parciales: operadores diferenciales. Extremos relativos y condicionados. Integral sobre un rectángulo: interpretación geométrica y propiedades. Integrales iteradas. Cambio de variables: aplicaciones al cálculo de áreas, volúmenes, centro de masas, momento de inercia.

Temario de la asignatura

Tema 1. CÁLCULO INTEGRAL

Integración de funciones escalonadas. Sumas de Riemann de funciones acotadas en un intervalo compacto. Concepto de integral de Riemann. Integrabilidad de las funciones continuas y de las

Curso académico: Código: 2025-26 P/CL009_FC_D002

funciones monótonas.

Operaciones y orden en el conjunto de las funciones integrables, el espacio R[a,b] de las funciones R-integrables en [a,b]. Linealidad y monotonía de la integral. Aditividad respecto al intervalo de integración. Si f y g son de R[a,b] entonces también lo son inf(f,g), (f,g), f_+ , f_- y f V.

Teoremas de valor medio. La función $F(x) = \int_a^x f(t)dt$, cuando f está en R[a,b]. Regla de Barrow.

Cálculo de primitivas. Primitivas inmediatas. Cálculo de primitivas por partes y por cambio de variable.

Primitivas de funciones racionales, de funciones racionales en senx y cosx, y de funciones racionales en x y $\sqrt{ax^2 + bx + c}$

Cálculo de áreas planas y de volúmenes y áreas laterales de cuerpos de revolución.

Tema 2. SUCESIONES Y SERIES FUNCIONALES

Convergencia (sumabilidad) puntual y uniforme de una sucesión (serie) de funciones. Criterio mayorante de Weierstrass para la sumabilidad uniforme de una serie funcional.

Convergencia (sumabilidad) uniforme y continuidad, diferenciabilidad e integrabilidad.

Series de potencias. Radio de convergencia. Convergencia uniforme en los compactos del intervalo de convergencia.

Serie de Taylor de una función indefinidamente derivable en un punto. Concepto de función analítica: algunos ejemplos y propiedades.

Tema 3. CÁLCULO EN VARIAS VARIABLES

3.1 EL ESPACIO \mathbb{R}^n

Norma, producto escalar y distancia en \mathbb{R}^n . La topología de \mathbb{R}^n : conjuntos compactos, conexos, conexos por arcos, conexos por poligonales y convexos. Sucesiones y reries en \mathbb{R}^n .

Funciones de \mathbb{R}^m en \mathbb{R}^n . Límite de una función en un punto. Límites según un subconjunto, límites direccionales.

Funciones continuas de \mathbb{R}^m en \mathbb{R}^n .

3.2 CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

Definición de función de \mathbb{R}^m en \mathbb{R}^n diferenciable en un punto. Álgebra de derivadas, regla de la cadena. Derivadas direccionales, derivadas parciales, matriz jacobiana.

Derivadas de orden superior. Teorema de Schwarz. Teoremas de Taylor.

Máximos y mínimos relativos de funciones diferenciables.

Extremos condicionados. Teorema de los multiplicadores de Lagrange.

3.3 CÁLCULO INTEGRAL EN VARIAS VARIABLES

Definición de función de \mathbb{R}^n en \mathbb{R} Riemann-integrable en un conjunto. Aditividad, monotonía, etc. de la integral.

Reducción de una integral múltiple a integraciones simples reiteradas.

Nociones sobre integrales de superficie.

Curso académico:Código:2025-26P/CL009_FC_D002

Algunas aplicaciones: centro geométrico o centroide, cálculo de masas, centro de masas.

Actividades formativas												
Horas de trabajo del alumno por tema		Horas	Horas actividades prácticas				Horas actividad de seguimiento	Horas. No presencial				
Tema	Total	GG	СН	L	0	S	TP	EP				
1	50	20						30				
2	38	16						22				
3	50	20						30				
Evaluación	12	4						8				
TOTAL	150	60						90				

GG: Grupo Grande (100 estudiantes).

CH: prácticas clínicas hospitalarias (7 estudiantes)

L: prácticas laboratorio o campo (15 estudiantes)

O: prácticas sala ordenador o laboratorio de idiomas (30 estudiantes)

S: clases problemas o seminarios o casos prácticos (40 estudiantes).

TP: Tutorías Programadas (seguimiento docente, tipo tutorías ECTS).

EP: Estudio personal, trabajos individuales o en grupo, y lectura de bibliografía.

Metodologías docentes

- 1. Explicación y discusión de los contenidos.
- 2. Resolución, análisis y discusión de problemas. Realización, exposición y defensa de trabajos y proyectos.
- 5. Trabajo autónomo del estudiante.

Resultados de aprendizaje

Al completar la materia Matemáticas, el estudiante:

· Comprende los conceptos elementales del cálculo diferencial e integral en una y varias variables (funciones de una variable, sucesiones y series de números reales, límites, continuidad, derivabilidad, primitivas e integrales definidas, análisis numérico y ecuaciones

Curso académico:Código:2025-26P/CL009_FC_D002

diferenciales, funciones de varias variables, derivadas parciales y direccionales, extremos relativos y condicionados, integrales iteradas, cambio de variables, etc) necesarios para el estudio de la Probabilidad, la Estadística y la Investigación Operativa.

- · Comprende los conceptos elementales de álgebra lineal (espacios vectoriales, aplicaciones lineales y matrices, autovectores y autovalores, diagonalización, tensores, sistemas de ecuaciones lineales, geometría afín y euclídea, etc) necesarios en el estudio de la Probabilidad, la Estadística y la Investigación Operativa.
- · Será capaz de utilizar con soltura el lenguaje básico de las Matemáticas. Entenderá lo que es una demostración y conocerá los principales tipos de demostraciones: inducción, reducción al absurdo, etc.
- · Conocerá y manejará los conceptos básicos sobre conjuntos, aplicaciones, combinatoria y relaciones binarias. Conocerá los conjuntos de números enteros y racionales, la construcción de los mismos y sus propiedades básicas. Manejará los polinomios y las funciones racionales.
- · Conocerá el concepto de espacio métrico y estará familiarizado con distintos ejemplos. Conocerá los conceptos básicos de Topología.

Sistemas de evaluación

Se aplicará el sistema de calificaciones vigente en cada momento; actualmente, el que aparece en el RD 1125/2003, artículo 5º. Los resultados obtenidos por el estudiante se calificarán según una escala numérica de 0 a 10, con expresión de un decimal, a la que podrá añadirse su correspondiente calificación cualitativa: 0 – 4.9: Suspenso (SS), 5.0 – 6.9: Aprobado (AP), 7.0 – 8.9: Notable (NT), 9.0 - 10: Sobresaliente (SB). La mención de Matrícula de Honor podrá ser otorgada a alumnos que hayan obtenido una calificación igual o superior a 9.0. Su número no podrá exceder del 5% de los alumnos matriculados en una asignatura en el correspondiente curso académico, salvo que el número de alumnos matriculados sea inferior a 20, en cuyo caso se podrá conceder una sola Matrícula de Honor.

El alumno elegirá, según la normativa vigente, entre evaluación continua o evaluación global con una única prueba final. Tanto en un caso como en otro el alumno realizará un examen final escrito, en el que se evaluarán sus conocimientos teóricos y prácticos.

En el caso de la evaluación continua, el alumno podrá realizar las actividades de autoevaluación propuestas por el profesor y un examen parcial. Estas actividades podrán añadir a la nota final del alumno hasta un máximo de 1.5 puntos sobre 10 (la nota máxima será 10 en todo caso).

Curso académico: 2025-26 P/0

Código: P/CL009_FC_D002

En el caso de la evaluación global, la nota final del alumno será la del examen final escrito.

Actividades e instrumentos de evaluación: exámenes escritos.

Bibliografía (básica y complementaria)

Son muchos los libros en los que pueden verse (en órdenes distintos, de diferentes formas,...) los temas tratados en esta asignatura, pero no se seguirá ninguno concreto. A modo de ejemplo, todo puede encontrarse en:

- T.M. Apostol, Análisis Matemático, Ed. Reverté, Barcelona, 1960.
- K.R. Stromberg. An introduction to classical real analysis, Ed. Wadsworth & Brooks, 1981
- M. Spivak, Cálculo Infinitesimal, 2ª Ed. Ed. Reverté (Calculus, Second Edition)
- Cálculo Infinitesimal de Una Variable, Ed. McGraw Hill, Madrid, 2006.
- J.A. Fernández Viña, Lecciones de Análisis Matemático I, Ed. Tecnos, Madrid, 1981.
- W. Rudin, Principios de Análisis Matemático, Ed. McGraw Hill, México, 1980.
- Salas-Hille. Calculus I y II. Ed. Reverté, S.A. Barcelona, 2002-2003.
- Larson, Hostetler y Edwards. Cálculo I y II. Cengage Learning
- Smith y Minton. Cálculo I y II. Mcgraw-Hill College
- Ayres y Mendelson. Cálculo. Mcgraw-Hill
- E. Simmons. Cálculo y geometría analítica. Mcgraw-Hill (2002)

Otros recursos y materiales docentes complementarios

Página web de la asignatura (matemáticas.unex.es/~fsanchez)

Materiales en el Campus Virtual