

TEST DE PREGUNTAS MULTIRRESPUESTA

Se deberá marcar con una cruz en la **HOJA de RESPUESTAS** la respuesta correcta de cada pregunta (sólo hay una respuesta válida en cada pregunta).

Las preguntas contestadas erróneamente **restan 1/4** de las respuestas correctamente respondidas. Las preguntas no contestadas no suman ni bajan la puntuación.

A) 43,4% de Na; 2 B) 38,7% de Na; 1 C) 43,4% de Na; 1	centesimal del carb 22,6% de C y 34,0% 1,3% de C y 50,0% 11,3% de C y 45,3% 22,6% de C y 45,3%	de O de O de O	
2. El elemento cor A) Grupo 1 y perio B) Grupo 2 y perio C) Grupo 3 y perio D) Grupo 2 y perio	odo 5 odo 4	l:	
3. ¿Qué elemento A) Sodio	tiene mayor carácte B) Magnesio		D) Silicio
A) solo si la tempe B) solamente a 25 C) solo si la tempe	5°C	·	
	oxígeno que hay en B) 4,92·10 ²⁴		
	un gas se introduce esión es de 1,5 atm. B) NO ₂	¿De qué gas se trata	
del 70% y densid		enrasa con agua de	icido nítrico comercial stilada. La molaridad D) 0,38
8. La energía de e energía cinética	extracción de un áto	mo de bario es de 2 ctrones arrancados	,50 eV. ¿Cuál será la al bario cuando es D) 1,25 eV

EX NORMALIS DO CALLESTON

XXXVIII OLIMPIADA DE QUÍMICA Fase Autonómica – Extremadura Facultad de Ciencias 2025

9. De los siguientes conjuntos de átomos, indicar cuál corresponde a elementos del mismo periodo:

- A) Ca, Cr, Cu, Cd
- B) Mg, Mn, Si, F
- C) Y, Ru, Ga, Se
- D) Sr, Pd, Sb, Xe

10. Una taza de 140 gramos a 20°C se llena con 250 gramos de café caliente a 86°C. El calor específico del café es 4,0 J/g°C y el de la taza es 0,752 J/g°C. Suponiendo que no hay pérdidas de calor a los alrededores, ¿cuál es la temperatura final (en °C) del sistema taza + café?

- A) 79,7
- B) 84,3
- C) 76,0
- D) 89,5

11. Al reaccionar 500 gramos de nitrato de plomo (II) con 920 gramos de yoduro de potasio se obtienen 600 gramos de yoduro de plomo (II) y nitrato de potasio. El rendimiento de la reacción, expresado en %, es:

- A) 89,2
- B) 86,2
- C) 82,3
- D) 84,7

12. Para la molécula de BF₃, la hibridación del átomo central y su geometría son:

- A) sp³, tetraédrica
- B) sp², trigonal plana
- C) sp, lineal
- D) sp³d, bipirámide trigonal

13. Para la reacción C_2H_4 (g) + H_2 (g) \rightleftharpoons C_2H_6 (g), ΔH = -32,7 kcal, la constante de equilibrio:

- A) aumentará al aumentar la presión.
- B) aumentará al aumentar la concentración de H_{2 (g).}
- C) disminuirá al aumentar la temperatura.
- D) no cambiará al añadir un catalizador.

14. Indicar cuál de las siguientes opciones es una reacción de sustitución:

- A) $2 \text{ Al} + \text{Cr}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2 \text{ Cr}$
- B) $PCl_3 + Cl_2 \rightarrow PCl_5$
- C) 2 KClO₃ \rightarrow 2 KCl + 3 O₂
- D) C + O₂ \rightarrow CO₂

15. Para una reacción de segundo orden total, las unidades de la constante de velocidad (k) son:

- A) s⁻¹
- B) L2-mol-2-s-1
- C) L2-mol-1-s-1
- D) L-mol⁻¹-s⁻¹

EX NOCUMENT

XXXVIII OLIMPIADA DE QUÍMICA Fase Autonómica – Extremadura Facultad de Ciencias 2025

- **16.** Las fórmulas del ácido nitroso, ácido sulfuroso, perclorato de estroncio y fosfato de calcio son:
- A) $HNO_3 H_2SO_3 Sr(CIO_4)_2 Ca_3(PO_4)_2$
- B) $HNO_2 H_2SO_4 Sr(CIO_4)_2 Ca_3PO_4$
- C) $HNO_2 H_2SO_3 Sr(CIO_4)_2 Ca_3(PO_4)_2$
- D) $HNO_2 H_2SO_3 SrClO_4 Ca_3(PO_4)_2$
- 17. Si en una reacción se emplea un catalizador positivo:
- A) El equilibrio se ve afectado si todas las sustancias están en estado gaseoso
- B) El equilibrio no se ve afectado
- C) El equilibrio no se ve afectado si todas las sustancias están en medio acuoso
- D) El equilibrio se ve afectado dependiendo de si la reacción es exotérmica o endotérmica.
- 18. ¿Cuál de las siguientes funciones no es una función de estado?
- A) Entalpía
- B) Entropía
- C) Energía interna
- D) Calor
- **19.** Indicar cuál es el orden creciente correcto del primer potencial de ionización de los siguientes átomos: Sr, Cs, S, F, As
- A) Cs < Sr < As < S < F
- B) Cs < S < Sr < As < F
- C) Sr < As < Cs < S < F
- D) Sr < Cs < As < S < F
- **20.** En una red tipo de cloruro de sodio, la energía de red:
- A) Aumentará si aumenta el radio del catión.
- B) Disminuirá si aumenta la carga del anión.
- C) Aumentará si disminuye la distancia interiónica.
- D) No depende de la carga de los iones.

DATOS DE INTERÉS

Constantes	Equivalencia entre unidades
$N_A = 6,022 \cdot 10^{23}$	1 atm = 760 mmHg
$R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	$1 J = 6,242 \cdot 10^{18} \text{ eV}$
$h = 6.63 \cdot 10^{-34} \text{ J} \cdot \text{s}$	
$c = 3.10^8 \text{ m} \cdot \text{s}^{-1}$	
Números atómicos	Masas atómicas (u)
B (Z = 5)	H = 1
F(Z = 9)	C = 12
S (Z = 16)	N = 14
As $(Z = 33)$	O = 16
Sr(Z = 38)	Na = 23
Cs (Z = 55)	S = 32
	K = 39,1
	I = 126,9
	Pb = 207,2

DNI:	
------	--

HOJA de RESPUESTAS

	<u>A</u>	В	С	D		<u>A</u>	В	С	D
(1)			X		(11)		X		
(2)		X			(12)		X		
(3)	X				(13)			X	X
(4)				X	(14)	X			
(5)		X			(15)				X
(6)				X	(16)			X	
(7)	X				(17)		X		
(8)			X		(18)				X
(9)				X	(19)	X			
(10)	X				(20)			X	
Preg		correct errónea							

• En la pregunta 13, se ha comprobado que tanto la respuesta C, como la D, eran posibles, por lo que se han dado por buenas las dos respuestas.

DNI:	

PROBLEMA 1

Una roca caliza contiene carbonato de calcio.

- **A)** Hallar la riqueza en carbonato de calcio de la roca, sabiendo que 0,35 g de esta reaccionan con 60 mL de una disolución 0,10 M de ácido nítrico, dando como productos nitrato de calcio, dióxido de carbono y agua.
- **B)** Si se tratan 200 g de carbonato de calcio (de igual pureza) con una disolución 4,0 M de ácido clorhídrico, calcular:
 - **B.1.)** El volumen de la disolución de ácido clorhídrico que se necesita para completar la reacción.
 - **B.2.)** El volumen de dióxido de carbono desprendido, medido a 15°C y 750 mmHg de presión, sabiendo que se obtienen, además, cloruro de calcio y agua.

Datos: R = 0,082 atm·L·mol⁻¹·K⁻¹; masas atómicas (u): C: 12; O: 16; Ca: 40

SOLUCIÓN:

A) La reacción es $CaCO_3 + 2 HNO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O$ Riqueza = 85,71%

B) La reacción es CaCO₃ + 2 HCl → CaCl₂ + CO₂ + H₂O

B.1) V (HCI) = 0,86 L

B.2) $V(CO_2) = 41 L$

ONI:	

PROBLEMA 2

El pentacloruro de fósforo se descompone con la temperatura dando tricloruro de fósforo y cloro. A 227°C la reacción tiene un valor de $K_c = 2,24\cdot10^{-2}$. Si se introducen 4 moles de pentacloruro de fósforo en un recipiente cerrado de 10 L y su temperatura se eleva a 227°C, calcular:

- **A)** La concentración en mol·L⁻¹ de cada una de las especies que intervienen en la reacción una vez alcanzado el equilibrio.
- B) Los moles de pentacloruro de fósforo que quedan sin reaccionar.
- C) Presión parcial de cada gas.
- **D)** Moles de pentacloruro de fósforo que quedan sin reaccionar si se añaden al recipiente 10 moles de cloro.

Datos: $R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$; masas atómicas (u): P: 31; CI: 35,5

SOLUCIÓN:

Reacción: PCl₅ → PCl₃ + Cl₂

A) $[PCl_5] = 0.316 \text{ mol/L}; [PCl_3] = [Cl_2] = 0.084 \text{ mol/L}$

B) 3,16 moles de PCI₅

C) P_{PCl_5} = 13 atm; $P_{PCl_3} = P_{Cl_2}$ = 3,44 atm

D) 3,91 moles de PCI5

DNI:	 	 	

PROBLEMA 3

Dibujar el ciclo de Born-Haber para el Al $F_{3(s)}$ y calcular la afinidad electrónica del $F_{(g)}$ a partir de los siguientes datos de energía.

Datos (en kJ·mol⁻¹):

Energía de sublimación del AI $_{(s)}$ = 330 Energía de disociación del F $_{2(g)}$ = 159 Primer potencial de ionización del AI $_{(g)}$ = 578 Segundo potencial de ionización del AI $_{(g)}$ = 1817 Tercer potencial de ionización del AI $_{(g)}$ = 2745 Energía de formación del AIF $_{3(s)}$ = -490 Energía de red del AIF $_{3(s)}$ = -5215

SOLUCIÓN:

 $\Delta E F(g) = -328 \text{ kJ/mol}$