Nombre:_		
marcar con una pregunta (sólo l	hay una respuesta válida en de las respuestas correctament	FA (4 puntos) ESTAS (al final del test) la respuesta correc cada pregunta). Las preguntas contestad te respondidas. Las preguntas no contestad

Se deberá marcar con u de cada pregunta (sólo	ina cruz en la HOJA de o hay una respuesta va 4 de las respuestas corr	álida en cada pregunta).	lel test) la respuesta correcta Las preguntas contestadas as preguntas no contestadas
-	nación correcta de nú B) 1, 1, 0, +1/2	mero cuánticos (n, l, m C) 1, 0, 0, -1/2	l, m _s): D) 2, 1, -2, +1/2
			ralizan con 25,500 cm³ de rigina 0.918 g de agua. El
A) Butanoico	B) Propanoico	C) Etanoico	D) Metanoico
3 ¿Cuál de las sigui A) H ₂ Te	entes sustancias tiene B) CH ₄	e puentes de hidrógeno C) HCl	? D) CH₃OH
volumen del recipien A) No se produce nir	te produce el siguien nguna variación	H ₂ O _(g) ⇌ Ni ₃ O _{4(s)} + 4 te efecto sobre el equil B) El valor de Kp di D) El valor de Kp a	sminuye
5 La entropía del ur A) Es siempre cero C) Permanece consta		como un sistema aislad B) Siempre aumenta D) Siempre disminu	L
6 Los iones S ²⁻ y K A) Poseen igual núm C) Son isótopos		B) Poseen el mismo D) El ion K ⁺ es may	
7 ¿Cuántos moles d 150 mL de Pb(NO ₃) ₂		e añaden 250 mL de di	isolución de KI 0.200M a
		C) 0.015 mol	D) 5,6·10 ⁻³ mol
	cuosa tiene 7,00 % e nol en esta disolución		densidad es 0,92 g·mL ⁻¹ .
A) 0,189 M	B) 1,4 M	C) 0,05 M	D) 0,85 M
	osa formada por 1,5 presión parcial del A		e CO ₂ ejerce una presión
A) 1,8 atm	B) 2,1 atm	C) 4,9 atm	D) 3,5 atm

Nombre:			

átomo. El valor de la e	oleta de longitud de onda energía de ionización del D) 417,4
na disolución de una	sal, ¿qué datos de los
2 Masa molar de la	
	ución D) 1, 2 y 4
	•
	n agua que se prepara mL de agua, a 20 °C es:
C) 8,58	D) 10,86
as a 9 atm de presión e	stá conectado por medio
L conteniendo gas a 6 n será, en atm:	atm; cuando se abre la
L conteniendo gas a 6	-
C conteniendo gas a 6 n será, en atm: C) 4	atm; cuando se abre la
C conteniendo gas a 6 n será, en atm: C) 4	atm; cuando se abre la D) 15 3, CH ₃ OH, C ₂ H ₆ , Ne?:
L conteniendo gas a 6 n será, en atm: C) 4 e ebullición para KNO	atm; cuando se abre la D) 15 3, CH ₃ OH, C ₂ H ₆ , Ne?: I < KNO ₃
L conteniendo gas a 6 n será, en atm: C) 4 e ebullición para KNO B) Ne <c<sub>2H₆<ch<sub>3OH</ch<sub></c<sub>	atm; cuando se abre la D) 15 3, CH ₃ OH, C ₂ H ₆ , Ne?: I < KNO ₃
L conteniendo gas a 6 n será, en atm: C) 4 e ebullición para KNO B) Ne <c<sub>2H₆<ch<sub>3OH D) C₂H₆< Ne<ch<sub>3OH</ch<sub></ch<sub></c<sub>	atm; cuando se abre la D) 15 3, CH ₃ OH, C ₂ H ₆ , Ne?: I < KNO ₃
L conteniendo gas a 6 n será, en atm: C) 4 e ebullición para KNO B) Ne <c<sub>2H₆<ch<sub>3OH</ch<sub></c<sub>	atm; cuando se abre la D) 15 3, CH ₃ OH, C ₂ H ₆ , Ne?: H < KNO ₃ H < KNO ₃
L conteniendo gas a 6 n será, en atm: C) 4 e ebullición para KNO B) Ne <c<sub>2H₆<ch<sub>3OH D) C₂H₆< Ne<ch<sub>3OH</ch<sub></ch<sub></c<sub>	atm; cuando se abre la D) 15 3, CH ₃ OH, C ₂ H ₆ , Ne?: H < KNO ₃ H < KNO ₃
i	átomo. El valor de la el 023·10 ²³ mol ⁻¹ C) 317,4 na disolución de una 2 Masa molar de la 4 Volumen de disol C) 2 y 3 ásolución de etanol el 789 g·mL ⁻¹) con 100,0 C) 8,58

C) CCl₂F₂>CH₂F₂>CCl₄>CH₂Cl₂

D) CH₂F₂>CCl₂F₂>CCl₄> CH₂Cl₂

17.- Un gas ideal absorbe 1000 calorías de calor y, al mismo tiempo, se expande realizando un trabajo de 3 kJ; ¿cuál es la variación de su energía interna?:

A) -2000 J

B) +4000 J

C) +1180 J

D) +7180 J

Nombre:					

- 18.- ¿Cuál de las siguientes afirmaciones es verdadera?:
- A) Un proceso endotérmico y espontáneo tiene $\Delta G < 0$ y $\Delta S < 0$
- B) En el proceso $Hg_{(l)} \rightarrow Hg_{(g)}$ la entropía disminuye
- C) Cualquier proceso espontáneo es aquel en que $\Delta G > 0$
- D) Un proceso endotérmico y no espontáneo puede llegar a ser espontáneo aumentando la temperatura.
- 19.- La entalpía estándar de formación de la urea, CO(NH₂)_{2(s)}, es 333,51 kJ·mol⁻¹. ¿A qué reacción química se refiere el dato anterior?:

A)
$$CO_{(g)} + N_{2(g)} + 2 H_{2(g)} \rightarrow CO(NH_2)_{2(s)}$$

B)
$$C_{(s)}$$
 + 1/2 $O_{2(g)}$ + $N_{2(g)}$ +2 $H_{2(g)} \rightarrow CO(NH_2)_{2(s)}$

C)
$$C_{(s)} + O_{(g)} + N_{2(g)} + 2 H_{2(g)} \rightarrow CO(NH_2)_{2(s)}$$

D)
$$C_{(s)} + O_{(g)} + 2 N_{(g)} + 4 H_{(g)} \rightarrow CO(NH_2)_{2(s)}$$
.

- 20.- Al añadir una pequeña cantidad de soluto no volátil a un disolvente volátil, indicar cómo varían las siguientes propiedades: presión de vapor, punto de ebullición, punto de fusión y presión osmótica a través de una membrana semipermeable, de la disolución resultante respecto del disolvente puro:
- A) Disminuye, aumenta, aumenta, disminuye
- B) Disminuye, aumenta, disminuye, aumenta
- C) Aumenta, aumenta, disminuye, aumenta
- D) Aumenta, disminuye, aumenta, disminuye

Nombre:

HOJA de RESPUESTAS

	A	В	C	D			A	В	C	D
1)						11)				
2)						12)				
3)						13)				
4)						14)				
5)						15)				
6)						16)				
7)						17)				
8)						18)				
9)						19)				
10)						20)				
Pregu		orrectas róneas:								

PROBLEMA 1 (2 puntos)

Uno de los métodos de tratamiento de aguas residuales es el de digestión bacteriana. En una primera fase del mismo actúan las bacterias Nitrosomonas que metabolizan la conversión del amoniaco a nitritos produciéndose al mismo tiempo biomasa (C₅H₇O₂N) en reacción global (no ajustada) que se puede representar como:

$$5~{\rm CO_{2(g)}} + 55~{\rm NH_4}^+{}^{\rm +}{}_{\rm (aq)} + 76~{\rm O_{2(g)}} \\ \rightarrow {\rm C_5H_7O_2N} + 54~{\rm NO_2}^{\rm -}{}_{\rm (aq)} + 109~{\rm H}^+{}_{\rm (aq)}$$

Si en un tanque de residuos inoculados con bacterias hay 100.000 kg de aguas residuales que contienen un 4.5 % en peso de iones amonio, y se consume el 90 % del amonio, ¿qué cantidad de biomasa se producirá?. El dióxido de carbono necesario para completar la reacción se almacena a 10 atm de presión y a una temperatura de 25 °C, ¿qué volumen ocupará?

Masas atómicas (g·mol⁻¹): H = 1,01; C = 12,01, N = 14,00, O = 16,00. R= $0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 8,314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

PROBLEMA 2 (2 puntos)

Cuando en una bomba calorimétrica se queman 0,253 g de acetona (propanona líquida), se observa una elevación de la temperatura en la bomba de 12,5 a 14,6 °C. Si la capacidad calorífica total de la bomba es 2815 J·K⁻¹; determinar: a) El calor de combustión de la bomba en J·g⁻¹.

- b) El calor de combustión estándar de la acetona, a presión constante.
- c) El calor de formación estándar de la acetona, a presión constante.

Masas atómicas (g·mol⁻¹): H = 1,01; C = 12,01, O = 16,00. R= 0,082 atm·L· mol⁻¹·K⁻¹ = 8,314 J·mol⁻¹·K⁻¹. ΔH_f^o (CO_{2(g)}) = -395,5 kJ·mol⁻¹; ΔH_f^o (H₂O_(l)) = -285,5 kJ·mol⁻¹.

PROBLEMA 3 (2 puntos)

Una cierta cantidad de NOCl se introduce en un matraz a 200 °C. En el equilibrio:

$$2 \text{ NOCl}_{(g)} \rightleftharpoons 2 \text{ NO}_{(g)} + \text{Cl}_{2(g)},$$

la presión total es 1 atm y la presión parcial del NOCl es 0,64 atm.

- a) Calcular la constante de equilibrio K_p.
- b) La constante K_p aumenta en un 2% por grado de temperatura alrededor de los 200 °C; calcular ΔH^o para la reacción del equilibrio.
- c) Suponiendo que K_p , a 200 °C, es 0,1, calcular la presión a la cuál el grado de disociación de NOCl será 0,2.

 $R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.